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Theory of Games and Applications
in Forestry

Benee F. Swindel, Project Leader

Intensive Managenent  Practices
Assessnent Center
Gai nesvill e, Fl ori da
. Introduction and Theoretical Aspects

1.0. Game Theory in Forestry

The theory of games of strategy de-
rives from von Neunann and Morgenstern
(1944). Their book was greeted with
considerable enthusiasm by nmilitary
strategists, economists, and others.

The elegance of their development of the
theory is nmuch admred. Still, substan-
tive applications wthin forestry and
other natural resources fields have been
rare. The root cause of this paucity of
applications is not clear. Surely the
theory is Ilittle known to forest man-
agers and decisionmakers. Al this
suggests that an exposition of gane
theory for natural resources managers
could encourage application of the tech-
niques in solving real problens. Hence
this paper. Aside from that, the theory
has an intrinsic beauty and study of

such abstractions, as of mathematics
generally, inculcates lofty habits of

m nd.

There are very obvious linitations to
the applicability of game theory. Thus,
two-person, constant-sum ganes assune
two know edgeable and selfish adver-
saries wth opposed interests. dearly,
the adversaries can be two people, but
need not be. They can as well be two
agencies, two conpanies, two coalitions
tw armes. Al that is required is
that individuals in each group share, so
far as the gane being played is con-
cerned, a common interest.

The interests nust be strictly opposed

One player's gain is the other's 1oss
Each is assuned know edgeable of al
options and their consequences, Each is
expected to try to maximze his own

gain, inplying he seeks to nmaximze his
opponent's loss. Such situations nust
be rare wthin a single organization

with a united purpose. Thus, wthin a
company or agency managing land for
profit or public good, it appears that
opportunities for strict applicability
of this theory as a guide to rationa
behavior are indeed rare. Even between
conpanies wthin an industry or between
departments wthin an agency, conpelling
exanples of conplete antagonism do not
readily come to nind in profuse
abundance

Still, there are instances of conflic-
ting situations that can be described
fundanentally as a game of strategy be-
tween two or nore adversaries. The
insight provided by the game theoretic
fornulation and solution can be a help-
ful guide to choosing, predicting, or
understanding rational behavior in such
ci rcumst ances. A few exanples that my
be suggestive of many are given in $11.
Those are necessarily nmuch sinplified in
order to treat them in the space allot-
ted and so that the techniques of prob-
lem solving may not be lost in the
conplexities of more realistic
situations

In order that the theory may not seem
trival, we now attenpt to show that the
logic of game theoretic abstractions has
profound inplications for large problens
(as well as delightful inplications for
small ones). To do so we extract freely
from Garrett Hardin (1968). Hardin's
thesis was that the world population
problem has no technical solution but
requires rather a fundanental extension
of norality. Some of his analyses are
used out of that context--since they
apply equally to the one we consider

Wth regard to some of its attributes,
the forests of a nation are often con-
ceived as a comons. Their beauty and
protective influence over water and
wildlife resources are thought of as a
nat ur al resource. Concerned citizens
frequently express an interest in the
conservation of these resources and
sonetimes object to nrmanagement neasures
inplemented to achieve the imediate
objectives of the |andowner.

In Hardin's words:

"The tragedy of the commons devel ops
in this way. Picture a pasture open to
all. It is to be expected that each
herdsman will try to keep as many cattle



the comons.  Such an
arrangenment may work reasonably satisfac-
torily for ~centuries because tribal
wars, poaching, and disease keep the
nunbers of both man and beast well bel ow
the carrying capacity of the land
Finally, however, comes the day of
reckoning, that is, the day when the
long-desired goal of social stability
becomes a reality. At this point, the
inherent logic of the commons renorse-
lessly generates tragedy.

"As a rational being, each herdsman
seeks to maximze his gain. Explicitly
or inplicitly, nore or |less consciously,
he asks, '\Wat is the utility to me of
adding one nore animal to my herd?
This utility has one negative and one

as possible on

positive  conponent.
(1) The positive conponent is a
function of the increment of one aninal.

Since the herdsman receives all the

proceeds from the sale of the additiona

animal, the positive utility is nearly +1.
(2) The negative conponent is a

function of the additional overgrazing
created by one nore aninmal. Since, how
ever, the effects of overgrazing are
shared by all the herdsnen, the negative
utility of any particular decision-making
herdsman is only a fraction of -1.

"Adding together the conponent
utilities, the rational herdsman
concludes that the only sensible course
for him to pursue is to add another

partial

animal to his herd. And another; and
anot her. ... Rut -this is the conclusion
reached by each and every rationa
herdsman sharing a commons. Therein is
the tragedy. Each man is locked into a
system that conpels him to increase his
herd wthout limt--in a world that is
l'imted. Ruin is the destination toward
which all men rush, each pursuing his
own best interest in a society that

the comons
ruin to

believes in the freedom of
Freedom in a commons brings
all."

Do these concepts of a constant-sum

game, and the tragic inplications of
domnated strategies so graphically
described, have any analogous inplica-
tions in the conplex problems of fornu-
lation of forest resources managenent
policy? Hardin hinself gives both a
specific and general illustration that

establishes the affirmative

"The National Parks present another
instance of the working out of the trag-
edy of the commons. At present, they
are open to all, without limt. The
parks themselves are limted in extent--
there is only one Yosenite Valley--
whereas population seems to grow wthout
limt. The values that visitors seek in
the parks are steadily eroded. Plainly,
we nust soon cease to treat the parks as
commons or they will be of no value to
anyone.
" What
options

shall we do? W have several

Ve nmight sell them off as pri-
vate property. W night keep them as
public property, but allocate the right
to enter them The allocation night be
on the basis of wealth, by the use of an
auction system It mght be on the
basis of nerit, as defined by sone
agr eed- upon standards. It mght be by
lottery. O it mght he on a first-cone,
first-served basis, admnistered to long
queues. These, | think, are all the
reasonabl e possibilities. They are all
obj ecti onabl e. Rut we nmust choose--or
acquiesce in the destruction of the com
mons that we call our National Parks..
In a reverse way, the tragedy of the
commons reappears in problems of pollu-
tion. Here it is not a question of
taking something out of the conmons, but
of putting something in--sewage, or chem
ical, radioactive, and heat wastes into
water; noxious and dangerous funes into
the air; and distracting and unpleasant
advertising signs into the line of
sight. The calculations of wutility are
mich the same as before. The rationa
man finds that his share of the cost of
the wastes he discharges into the com
mns is less than the cost of purifying
his wastes before releasing them  Since
this is true for everyone, we are |ocked
into a system of 'fouling our own nest,’
so long as we behave only as independ-
ent, rational, free-enterprisers.”

Hardin concludes that the solution to

producing tenperance in the use of a
commons resides in nutual coercion
mutual Iy agreed wupon. Inportantly, he
remarks:

"I+ is worth noting that the nortality
of an act cannot be determined from a
phot ogr aph. One does not know whether a
mn killing an elephant or setting fire



to the grassland is harnming others unti
one knows the total system in which his
act appears. 'One picture is worth a
thousand words,' said an ancient Chinese
but it my take 10,000 words to validate
it. It is as tenpting to ecologists as
it is to reformers in general to try to
persuade others by way of the photograph-
ic shortcut. Rut the essence of an
argunent cannot be photographed: it

must be presented rationally--in words."

The conpelling logic of the foregoing
analysis leads to the conclusion that
policies to protect forest resources
will best rely on nmutual coercion
mutually conceived from reliable evi-
dence concerning the functioning of the
total forest ecosystem Again quoting
Hardin,

"reaching an acceptable and stable
solution wll surely require more than
one generation of hard analytical work--
and nuch persuasion."”
Persuasion and agreenent
standing the analytical work--including
the tools of the analysis. (Cccasionally
the appropriate analytical tool is the
theory of games of strategy.

depend on under-

1.1. Zero-Sum  Two-Person (Ganes

The following abstraction taken as a
definition of a game of strategy wll he
sufficiently general for nost purposes
e of two players is required to choose
one anong the finite set of strategies

A = { a‘]l 3-2( air e 8y am }-

The second player is required to choose
one strategy from the finite set

B={b1lb21bj, ....bn}n

Each player is aware of all of his own
and all of his opponent's alternatives

but nust choose his own strategy without
benefit of knowing his opponent's

choi ce. Subsequent to a choice of strat-
egy, say aj, by Player I, and a choice

of strategy, say by, by Player 11,

Player Il is required to pay Player | an

amount 445 (possibly  negative). Such
games are called two-person ganes for
obvi ous reasons and zer 0- sum games Si nce
the sum of the winnings of the two

players is zero; there is no "house."

Clearly, zero-sum two-person games are
characterized by their payoff matrix
which is known to both players.
Player 1l Strategies
by bn
a1 A1 292 215 - 21n
ai 2’11 ’Q']_z ) 2’]‘_3 o @ Zin

am| Am1 fm2 eee &mj ees Lmn

It is obvious that Player Il would
like to choose a strategy so that the
payoff (which is his loss) is as small
as possible. But, the payoff depends on
the strategy chosen by Player |I. So, the
question arises as to whether Player Il
has an optinum strategy. And conversely
for Player |, who wishes to nake the
payoff (which is his gain) as large as
possi bl e.

1.2, Strictly Determned Games

In the payoff matrix for certain ganmes
there is a payoff, £;4 say, simltaneous-
ly not larger than any payoff in the
same row, and not smaller than any pay-
off in the same colum. Such payoffs
are said to be a saddlepoint, the game
is said to bestrictly determned, and
45 is called the value of the gane.

%onsider the inplications to the two
pl ayers shoul d the payoff matrix in §I.1
contain a saddlepoint at %j5. If Player
| then chooses the strategy aj, he guar-
antees hinmself a payoff (gain) of at

| east %ij--no mtter what strategy
Player | chooses. Conversely, if
Player Il chooses the strategy b5, he

guarantees hinself a payoff (loss) of no
nmore than £i5. In this situation, it is
clear that neither player my, by any
alternate choice of strategy, hope to
obtain nore favorable results. Player |
cannot do better than choose aj, which
is called a maximm pure strategy and is



optinmum for him Player Il cannot do
better than choose b;, which is called a
minimax pure strategy” and is optinum for
him  The payoff is then 'Qij = v, say
the value of the gane.

1.3, Inadmssible Strategies

In some payoff matrices, a systematic
search for optinmum strategies is facili-
tated by deleting certain rows and/or
col umms. In the payoff matrix of §1.1,
suppose the first two colums possess
the property:

i1 > 4,

ig, @l i =1, 2 .. m and

aj| > kjp, some i =1, 2, ...

l.e., in each row the payoff in colum 1
is always as large as the payoff in

colum 2--and sonetines larger. In that
case, choosing by is always as good as

choosing by for Player |1, and sonetinmes
(for countering somechoices of his
opponent) it is better. Player |l can

have no reason ever to prefer strategy
by to by, and by is said to be dom -
nated by b,. Any strategy of either
player so domnated by an alternative
strategy is said to be inadmissible
and may be deleted from further

consi derati on.

1.4, Conputations for Strictly Deter-
mned Ganmes

The payoff matrix of $1.1 my be
systematically exanined to determine
whether it has a saddlepoint or not by
appending a colum (conposed of the row
mnima) and a row (conposed of the
colum nmaxim) as follows.

Player Il Strategies
b, b, .. by

@ a p11 o ta . Y1 min 413
It 1
g mn 4
4 .
g A Ay ty . on j B
Fi)
199}
L]
N LW )
[
& mn &
K .
A g Lo hma Lo Ao M

2. -

rriax il ”?X 212 rriax Yin

If the maxinmum of the elements in the
appended colum (i.e., the maximm of
the row mnima) is equal to the ninimm
of the appended ro-w (i.e., the mininum
of the colum maxima), then the game is
strictly determined (i.e., the payoff
matrix has a saddlepoint). Moreover,
any strategy of Player | that naxinzes
the row minim is a maximin Strategy and
an optinum strategy for him Con-
versely, any strategy of Player |l that
mnimzes the colum nmaxima is a minimax
strategy and an optimum strategy for
him  Finally, the value of the game is

v=max mn R. = mn nmax 4. .
1] ‘ i 1]

It may be noted that a payoff matrix
may have nmore than one saddl epoint. The
payoff is always v at each of them  And,
when either player has nmore than one
optimum strategy, he wll be indifferent
bet ween them si nce each guarantees a
payoff of v.

I.5. M xed Strategies

& have conpleted our theoretical
description of strictly determned ganes
of strategy. Henceforth we are par-
ticularly interested in games wth

payoff matrices where



(the opposite inequality is arith-
metically inpossible). From§t.4it is
obvious that Player Il always has a pure
strategy that ensures his loss wll be
no greater than the right-hand side of
the last inequality. Analogously,

Player | has a pure strategy that
ensures his gain wll be no less than
the left-hand side. In §1.4 these two
quantities were equal, and discovery of
such strategies constituted a solution
of the gane.

Now the disparity between the two
sides of the last inequality my be
viewed opportunistically by both
players--for it suggests the possibility
of increased gain (reduced loss) over
that guaranteed by the maxinmim (nmnimx)
pure strategy. The fundanental theorem
of games addresses this possibility and
provides a definitive solution for each
pl ayer. It enploys the concepts of
mxed strategies for the players and
expected payoff in the repetitive play
of the sane gane.

Consider then that Player | can elect
to choose ambng his pure strategies,
al, with the aid of a random device.
Thus, with such a device, he night
choose strategy a4 with probability
pi; @2 with probability py, :
and strategy a, with probability pp
wher e

O<p,,i =1 2 ***, mand 1=
i

b,
;1

™Mz

(For example, if in each play of a cer-
tain game, Player | has only tw pure
strategies, aj; and a,, and he chooses
aqif the flipping of a (fair) coin
shows heads, and he chooses a2 if the
coin shows tails, then m= 2 and pq =

P2 = 12+) Choice of a particular set of
probabilities

p =1p P2 pm 1

constitues choice of a mxed strategy by
Player |. The set of all nixed strate-
gies available to Player | is the set of
all Ixm vectors, such as p above, where
the elenents of p are nonnegative and
sum to one.

Ana
bn, W

-q_—_‘

ogously,  Player
anong his pure strategies
th probabilities

[011 qa,

N

]

¢

could choose

by, by, @

* %
1

1.€., he could choose a mixed strategy
by electing one anmong al

whose

el enents are

to one.
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1.7. The Fundamental Theorem
The fundanental theorem of games of

strategy given by John von Neunann

established that for every payoff mtrix
L

mx mn p L g~

g
and

mn max p L g~
4 B

both exist and they are equal. Their
comon value, say V, is called the value
of the gane. Stated another way, the

t heorem est abl i shes that in any zero-
sum two-person gane Player | has a
strategy, p*, among his strategies p,
and Player 1l has a strategy, g*, anong
his strategies g, such that

-

p L g*

Thus, from the left inequality, Player

Il has a strategy, q*, that guarantees
that his expected loss wll not exceed V
no matter what strategy Player |

chooses. And, from the right inequality,
Player | has a strategy, p*, that
guarantees that his expected gain will
be at least V no matter what strategy
Player 1l chooses. Since neither

pl ayer, by alternative choice of strat-
egy, can inprove his prospects, each my
as well choose p* and g*, respectively,
so as to achieve V in the long run: p*
is a maximin mxed strategy and optinmm
for Player I, g* is a minimax m xed
strategy and optimum for Player II.

It should be observed that the choice
of a pure strategy, a;, by Player 1,
i.e., the certain choice of a; can he
described as the choice of the mxed
strategy with pi = 1 and p = 0, where
k #i. And, sinilarly, the choice of
the pure strategy, bj, by Player |l can
be described as the choice of the mixed
strategy where all elements are zero
except for one in the jtDb position.

When the payoff matrix has a saddle-
point, the maximin pure strategy satis-
fies the defining property of p*, the
optinum mxed strategy for Playéer |, and
the minimax pure strategy satisfies the

€ v = -p_* L q*’ < .E.* Lﬂ' i

defining property of g*, the optinum
mxed strategy for Player II.

18. Mention of Qher Games

Extensions in several directions of
the theory of the preceding sections
have been attenpted. Sonme of them will
now be briefly reviewed.

Ganes involving three persons, four
persons, and in general many persons
have been formally considered. Here
we wll confine ourselves to quoting a
single paragraph from Dorfman and others
(1958):

"The theory of many-person ganes in
the hands of von Neumann and Morgenstern
is essentially a theory of coalitions,
their formation and revision. The
underlying idea is that tw persons in
such a situation cannot do worse by
acting jointly than by acting severally,
and may do better. Thus a many-person
game tends to be reduced to a
two-'person’ game in which each 'person'
is a coalition. The problems then
becone: which coalitions wll form and
how will the wnnings be divided anong
the nembers of the coalition? To pursue
the answers proposed for these questions
would lead us into a specialized
di scussion, and since these answers are
not very satisfactory we refrain."

Extending the results of zero-sum
games to constant-sum games s easy.
Indeed, in sone elementary expositions
the basic theory is presented on the
basis of the assunption that the sum of
the winnings of the two players is
al ways a constant, say £. We have taken
£ to be zero for convenience.

Further extension to non-constant-sum
games is much nore difficult. Wen one
player's gain is not necessarily the
other's loss, there is the possibility
of increased gain by both players
through collusion and cooperation
Unfortunately, as McKinsey (1952)
observes:

"Despite the great inportance of
general ganmes for the social sciences,
there is not available so far any treat-
ment of such ganmes which can be regarded
as even reasonably satisfactory."”



1.9. Decision Theory

One application of the theory of
zero-sum two-person games envisions a
garme of strategy between a deci si onmaker
and "nature." Some nodification of the
preceding arguments is required, and
there is considerble controversy
Moreover, even a cursory review of the
subj ect would require a treatnment com
parable in size to that given here to
games of conflict between selfish oppo-
nents. Still, this inportant subject
must be nentioned

So, we now consider briefly that the
abstraction of §I.1is sonetines used
to describe the situation of a decision-
maker (Player 11) "in the real world"
confronted with choosing anong decisions
or actions, bq, by, ® ** b,. In the
natural resources field, the sets of
actions confronting wvarious decision-
nmakers are as diverse as one can
i magi ne. They may deal with business,
forest managenment, personnel, Silvi-
culture, engineering, and selection, its
mai ntenance or deployment of equi pnent
The list goes on. Typically, choice of
a particular decision comits one for
the future. Even if it doesn't, the
optimum choice of action is typically
not evi dent due to uncertainties about
markets, economic conditions, natura
events such as weather to be encoun-
tered, action or state of biologica
agents, etc. In any event, it is
possible to envision the applicability
of the materials of §1.1to sonme of
these situations by taking Player | to
be, for lack of a better descriptor
"nature" and the strategies of "nature"
to be the various events or conditions
that the decisionmeker may confront.
The payoff, %;4, becomes the cost
(possibly negative, indicating a net
benefit) of taking action, by, should
condition a; materalize. (early,

Player 11 wﬁshes to choose an action,
b+, to mnimze his costs (maxinmze his
benefits). But, in the formulation of
§1.1, as in real life, uncertainty

about the condition, aj, that may pre-
vail creates uncertainty about the
desirable action

Now, a disparity. Previously, Pl ayer
| was considered to be an intelligent,
deliberative opponent, informed of the
payoff matrix, and expected to choose a
strategy, aj, to maximze Player II's
| 0ss. "Nature , " whether denoting next
month's weather, the biological agents
at work in a forest, or general economic
conditions expected for the next
quarter, can hardly be construed as so
perver se. Still, on occasion, the mini-
max solution given by game theory is
recommended for decisionmakers who
sinmply wish to guard against the -worst
conti ngency.

More often, an alternative base on
prognosis is recommended. For exanple
i f weather is the adversary, and poten-
tial conditions are enunerated, then
sonet hi ng of the probability of their
occurrence nmust be known--perhaps from
climtic records. If the period of time
of concern to the decisionmaker is near
and short, perhaps the historical fre-
quency of conditions may be nodified by
a weather forecast. Anal ogously, enough
of the health of a forest may be known
to specify the likelihood of various
bi ol ogical conditions, and there are
forecasts of future econonic conditions
What is usually recomended to the deci-
sionmaker equipped wth information on
the likelihood of various conditions is
that he determine his expected |oss
under each of his alternatives and
choose that one mninizing his expected
loss given his information. That is, a
Bayesian strategy, is usually recom
mended in such formulations as better
justified than a minimax oOne.

For the reader interested in decision
theory, several references in §1Iv are
selected from a volumnous literature

Il. Procedura
Appl i cations

Aspects and Illustrative

11.1. Locations for Two Conpanies in a
Forest
Suppose a single railroad traverses a
honogeneously forested region. Wthin



the forest, distances
from one boundary
scaled from zero to 100.

to the other

along the

rail way
are
Suppose two

forest products conpanies intend to

enter this nmarket by constructing a

single rail siding each where wood nmay
be scaled, purchased
transport to their
They nmust locate at
follow ng

| and Il, in the

and
respective
two points,
figure

| oaded

for

mlls.

such as

VvV
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will get all of
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proportions
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t he
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(minimax strategy)

saddl epoi nt .

and this payoff matrix has
Moreover, the optimm
(maximum strategy) for Conpany
in the center
50).

of the forest (at

optimum |ocation
for Conpany Il is

also in the center (at location 50),

Location of Conpany |
Row
0 20 40 50 60 80 100 mni m

0 +50 A0 «20 25 «30 .40 +50 .10
H

B 20 .90 .50 .30 «35 +40 +50 +60 +30
©

% 40 .80 .70 .50 .45 .50 .60 .70 .45
@)

H 50 W75 .65 .55 »50 (] +65 .75 .50 (-maxi mum

S 60| .70 .60 .50 .45 .50 .70 .80 .45
iN)
G

8 80 «60 «50 «40 +35 +30 «50 .90 «30
=

100 .50 <40 «30 «25 .20 .10 50 .10

Colum maxim .90 .70 .55 .50 .55 .70 .90
m ni mum



VWen both conpanies locate in the

center, they share the market 50-50 (.50
is the value of the gane). The payoff
corresponding to the two optimm strate-
gies exhibits the characteristic prop-
erty of a saddlepoint--it is smallest in
the row and largest in the colum con-
taining it (§1.2).

Notice that |locating one conpany at
any point other than the center vyields
more than half of the market to the com
petitor who locates in the center

11.2. Wen to Patro

Consider next a problem that con-
fronts, in nore or less conplex form
many forest nmanagers whose jobs include
an elenent of law enforcenent, i.e.
whether to patrol an area susceptible to
unlawful  entry. Problems of this type
arise in many forms due to the suscep-
tibility of forest land to tinber
trespass, poaching, arson, etc

Suppose a conpany forester is
alerted that his lands are the intended

target of an arsonist. During any par-
ticular susceptible period (e.g.
overnight) the arsonist may either

attenpt to set fire or he my not
he may stay hone). The forester's
alternative strategies my be to patro
or refrain. Suppose the payoff matrix
is

(i.e.,

. Action of Forester
ﬁfggﬁ%sﬁf Patrol Don't patrol Ei:ima
Burn -100 10 -100
Don't burn 1 0 0
Col um
maxi ma ! 10

The nunerical values of these payoffs
are debatable--as is the assunption of
zero-sum payoffs. But, the rationale
could be sonmething like this. If

neither protagonist acts, the (nutual)
result is the status quo--indicted by

zero payoff. If the patrol is enployed
in the absence of the arsonist, the com
pany incurs a cost of 1 man-day of

| abor. Alternatively, if

the arsonist strikes in the absence of a
patrol, the conpany incurs 10 man-days'
|abor in suppressing the fire. Both of
these labor costs are assumed to accrue
in satisfaction to the arsonist as
payment for a real or inmagined injustice
by the conpany. Finally, if both pro-
tagonists act, the arsonist is caught

and fined and/or inprisoned at con-
siderable personal loss. The conpany
correspondingly gains from the relief
from future patrols and suppression from
the arsonist apprehended and perhaps
from others who nmight entertain Ilike
anbitions for revenge or nischief in the

unnecessary

absence of an example of the potentia
consequences
This sinple game does not possess a
saddl epoint  since
mx mn £.. =0< 1 =min mx R,
i j 1] 3 i 1]

l.2s, the maximumof the rowmnim is
less than the nminimum of the colum
maxi na. Hence, the optimum strategy for
at least one of the players involves a
mxture of his pure strategies, and the
value of this game has not been deter-
m ned.

A general algebraic solution for 2x2
ganmes with payoff matrices

— —_—
211 212

21 22

wi t hout saddl epoints is available. 1In
such ganmes, Player I's optinmm m xed
strategy is to choose his first pure
strategy with probability p and his

second with probability [|-p where
222 - 4y
P =
ST P PR P 222



Anal ogously, Player 11's optinum m xed
strategy is to choose his first and
second pure strategies wth probabili-
ties q and 1-q, respectively, where

L -
22 J?'12

R11 = Ay - 221 + 222

Finally, the value of the gane is

j&11' 9‘22 - I612' 221

ST I P SV PP
Using the nunerical payoffs given at
the beginning of this section and the
relevant formulas, it is easy to find
t hat

(i) the optimum strategy for the
arsonist is to burn the woods
with probability p &~ 1/111 %
.009 -and to stay home wth
probability I-p = 110/111 =
.991,

(ii) the optimum strategy for the
forester is to patrol wth
probability q = 10/111 & .09
and to refrain with probabil-
ity I-g = 101/111 = ,91, and

(iii) the value of the game is
v = 10/111,
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11.3. A Gaphical Mthod for Finding an
Optimal Strategy for Any Player
Wth Two Strategies
Wthout attenpting to motivate the
specific game, we next illustrate a
graphical technique for finding
(approximately) an optinum nixed strat-
egy for any player who has only two
pure strategies from which to choose.
H's opponent may have any (finite)
nunber of pure strategies. Careful
study of this nmaterial wll facilitate
under st andi ng of $111. The exanpl e here
is from Singleton and Tyndall (1974).

Consider the game wth payoff matrix

Player |l Strategies
b1 lo2 b3 b4 R'OV\.I
| mnim
a1 1 2 4 0 0
0 -2 -3 4 -
a, 3
Colum | 1 2 4 4
maxi ma




Since the payoff matrix has no saddie-
point, the problem for Player | is to
find a mxture of his two pure strat-
egies, aj and ap, that maximzes his
mni mum expected gain (against any pure
or mxed strategy of Player 11). Thus,
Player | seeks a probability, p, wth
which he will choose his strategy
aq (and consequently a probability, I|-p,
with which he wll choose his strategy
a2) to mxinize his mninum expected
gai n.

Consider that, given p, Player I's
expect ed gain agai nst by (cf. colum one
of the payoff matrix) is

g, (p) = 1p+ 0 (1-p).

This function is plotted and labeled in
the following graph. It shows, for
exainple, that if Player | chooses p = 0,
so that he chooses with certainty his
strategy ap, then he gains against

by exactly zero (cf. payoff matrix). If

Player | chooses p = 1 so that he
chooses with certainty his strategy aq,
then he gains against by one. If Player

| chooses an intermediate p so that he
chooses a mxture of a4 and ay, then his
expected gain against by is given by the
graph of &, (p). Thus, if Player I
flips a fair coin to choose between

aq and aj, his expected gain agai nst

bq is one-half.

Simlarly, given p, Player 1's
pected gain agai nst b, b3, and by (cf.
colums 2, 3, and 4 of the payoff
matrix) are, respectively,

ex-

&, (p) =2 -2 (1 =p),
E3 (p) = 4p = 3 (1 = p), and
54 (p) = Op + 4 (1 = p).
Al of these functions are depicted in
the follow ng graph.
4- 53(1’)
£,(p)
£,(P)
& ()
0 | >
0 B, 1
E(p)=m1,in g @
-4
a, ay

1



Points on these straight |lines
the expected gain of Player | against
each of the pure strategies of Player |11l
for any p in the interval zero to one,
inclusive, i.e., for any mxed strategy
for Player I.

Rut, the graph instantly
than that. For every p, it shows Player
I"s minimum expected gain, whatever
Player 1l's strategy. Player |I's
mum expected gain is

depi ct

shows nore
mni -

£ (p) =min £ (p),

i 1

the bold, segmented Ilinear function in
the graph. Cearly, Player | nmaxinizes
hi s m ni num expected gain by choosing p
to maximze £ (p), i.e., by choosing the
point, pg, ticked on the graph's axis at
p = 0.8  Thus, Player 1's
egy is to choose

a, Wwth probability 0.8, and
a2 with probability 0.2

Any alternative choice of p clearly
lowers Player 1's mininum expected gain

(cf. graph).

[1l1.  Prograning for Conputer Execution

Following the strategy inplicit in
§11.3, we can outline a linear
prograning method for the solution of
general nmxn games.

Consider the game wth payoffs

'q'ij; i=1 2 ® = mj =12 @ ' 4
where m and n are (in principle) any
finite positive integers. Consider

first the problem of finding an optinum
strategy for Player |, i.e., an optinmm
vector, p, of probabilities for choosing
among his mpure strategies aq, ag, ',
Ape Should Player | choose the par-
ticular mxed strategy (cf. §1.5)

2= [P“’ p2l @ **| Pm] !

12

optinum strat -

then his expected gain against each of
Pl ayer II's strategies nmay be witten
down. These expectations are:

(agai nst b1)

S@ = Py py Ly ey Ay

(agai nst b2)

&, (@) = p, bia+ Py Loy + ¥ + P Ao

and
(agai nst b )

** + p K.

E(g):p1£1n+92£2n+' “m T mn

n

Now, for the nmonent, sinply define a
guantity V as the mnimm of these
expectations, i.e., define

V = mi_.n { €1 (g)l ‘22 (_P_)l 0y £

i n =
Then (cf. §11.3) Player |I's problemis

to choose p to maximze V.
In analogy wth problens of [linear

programing, think of Player | as having

(i) choice variables Pyr Pyr @ FF Doy
and v, and

(ii) the objective of nmaximzing v
Renenbering the constraints on the pi
and the definition (imediately above)

of v, Player |'s problemis to choose
P1s P2r **°r Dy to:

maxi mze V such that

P, JL”+P2221+.**+pm Sy 2V

Py gy ¥Ry oy e vp Ly 2V

Py &gyt By Ay o w2V
Py + p2 et =
, > 0

i

(p) } .



Now, adding a constant to all elenents
of the payoff matrix changes nothing as
far as strategies for playing a game are
concer ned. In particular, the constant
to 'be added may be chosen to be -max min
%;i ., This clearly assures that thet
value of the game is nonnegative. Con-
sequently, we may assume that V > 0.

Then Player |'s problem of finding an
optimumstrategy is the following |inear
programing program in nore conventional
not ation:

Choose p,, py, ® **, »p

p,, V to naximze
V subject to

V&O
>0
p1 S
P, >0
P >0
.** +
P1 + PZ+ pm 2_1
2,11 p1 +221 p2 N e + lml pm VZ_O
s e Jz’ -
1291 +222 Pys * in2Pm v> 0

zm P, +IL2n p2+”° +!er pm—v> 0
Player 1l1's problem of finding an
optinum strategy is the fanous duality

problem of linear prograning.
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